2018年6月4日 12:03

We shall begin by briefly reviewing the notion of orientation for surfaces.

As we have seen in Sec. 2-4, given a parametrization $x: U \subset R^2 \to S$ of a regular surface S at a point $p \in S$, we can choose a unit normal vector at each point of x(U) by the rule

 $N(q) = \frac{\mathbf{x}_u \wedge \mathbf{x}_v}{|\mathbf{x}_u \wedge \mathbf{x}_v|}(q), \quad q \in \mathbf{x}(U).$

Thus, we have a differentiable map $N: \mathbf{x}(U) \to R^3$ that associates to each $q \in \mathbf{x}(U)$ a unit normal vector N(q).

More generally, if $V \subset S$ is an open set in S and $N: V \longrightarrow R^3$ is a differentiable map which associates to each $q \in V$ a unit normal vector at q, we say that N is a differentiable field of unit normal vectors on V.

DEFINITION 1. Let $S \subset R^3$ be a surface with an orientation N. The map N: $S \to R^3$ takes its values in the unit sphere

$$S^2 = \{(x, y, z) \in \mathbb{R}^3;$$

The map N: $S \rightarrow S^2$, thus defined, is called the Gauss map of S (Fig. 3-2).

It is straightforward to verify that the Gauss map is differentiable. The differential dN_p of N at $p \in S$ is a linear map from $T_p(S)$ to $T_{N(p)}(S^2)$. Since $T_p(S)$ and $T_{N(p)}(S^2)$ are parallel planes, dN_p can be looked upon as a linear map on $T_p(S)$.

$$dNp: Tp(S) \longrightarrow Tp(S)$$
. Tangent map.

Consider curve $\underline{x(t)}$ in S . $\underline{cx(o)} = p$.

 $dNp(x'(O)) \triangleq \frac{d}{dt} N(u(t), v(t))\Big|_{t=0}$.

$= u'(0) N_{u} + v'(0) N_{v}.$ $Ip(v) \triangleq \langle -dNp(v), v \rangle : \underline{sef-adjoint} \ operator \ -dNp(v).$

DEFINITION 3. Let C be a regular curve in S passing through $p \in S$, k the curvature of C at p, and $\cos \theta = \langle n, N \rangle$, where n is the normal vector to C and N is the normal vector to S at p. The number $\underline{k_n} = k \cos \theta$ is then called the normal curvature of $C \subseteq S$ at p.

In other words, k_n is the length of the projection of the vector kn over the normal to the surface at p, with a sign given by the orientation N of S at p (Fig. 3-8).

Relations:

To give an interpretation of the second fundamental form H_p , consider a regular curve $C \subset S$ parametrized by $\alpha(s)$, where s is the arc length of C, and with $\alpha(0) = p$. If we denote by N(s) the restriction of the normal vector N to the curve $\alpha(s)$, we have $\langle N(s), \alpha'(s) \rangle = 0$. Hence,

$$\langle N(s), \alpha''(s) \rangle = -\langle N'(s), \alpha'(s) \rangle.$$

Therefore,

$$II_{p}(\alpha'(0)) = -\langle dN_{p}(\alpha'(0)), \alpha'(0) \rangle$$

$$= -\langle N'(0), \alpha'(0) \rangle = \langle N(0), \alpha''(0) \rangle$$

$$= \langle N, kn \rangle(p) = k_{s}(p).$$

In other words, the value of the second fundamental form H_p for a unit vector $v \in T_s(S)$ is equal to the normal curvature of a regular curve passing through p and tangent to v. In particular, we obtained the following result.

Let us come back to the linear map dN_p . The theorem of the appendix to Chap. 3 shows that for each $p \in S$ there exists an orthonormal basis $\{e_1, e_2\}$ of $T_p(S)$ such that $dN_p(e_1) = -k_1e_1$, $dN_p(e_2) = -k_2e_2$. Moreover, k_1 and k_2 ($k_1 \ge k_2$) are the maximum and minimum of the second fundamental form H_p restricted to the unit circle of $T_p(S)$; that is, they are the extreme values of the normal curvature at p.

DEFINITION 4. The maximum normal curvature k_1 and the minimum normal curvature k_2 are called the principal curvatures at p; the corresponding directions, that is, the directions given by the eigenvectors e_1 , e_2 , are called principal directions at p.

Check: find max. & min. of k(u,v).

DEFINITION 6. Let $p \in S$ and let $dN_p: T_p(S) \to T_p(S)$ be the differential of the Gauss map. The determinant of dN_p is the Gaussian curvature K of S at p. The negative of half of the trace of dN_p is called the mean curvature K of S at p.

In terms of the principal curvatures we can write

$$K=k_1k_2, \qquad H=\frac{k_1+k_2}{2}.$$

DEFINITION 7. A point of a surface S is called

- 1. Elliptic if $det(dN_p) > 0$.
- 2. Hyperbolic if $det(dN_p) < 0$.
- 3. Parabolic if $det(dN_p) = 0$, with $dN_p \neq 0$.
- 4. Planar if $dN_p = 0$.